Gaussian to Q-Chem: A Stationary
Gaussian to Q-Chem: A Stationary

Gaussian to Q-Chem: A Stationary

Gaussian to Q-Chem: A Stationary

Jiawei Xu and Yunlong Shang
Released: 2022-03-17 / Updated: 2022-06-16

This stationary is aimed to help Gaussian users to get familiar with common input keywords in Q-Chem.
Developers: Jiawei Xu and Yunlong Shang
Acknowledgement: We thank Prof. Haiyan Wei from Nanjing Normal University for her advice, computation resources and support in software.

Part I. Job Settings

Keywords for GaussianNotes for GaussianKeywords for Q-ChemNotes for Q-Chem
–Link1–Need one blank line before.@@@
%Mem=[Memory]Mem_Total N
Mem_Static N
Default: 8000 MB
Default: 64 MB for AO integrals.
%Chk=[filename].chkSave binary checkpoint file.GUI 2 or IQMol_FChk TrueSave formatted checkpoint file.

Part II. Basic Keywords

Keywords for GaussianNotes for GaussianKeywords for Q-ChemNotes for Q-Chem
NoSymmDo not use symmetry to accelerate and do not reorient molecule to standard orientation.(1) Symmetry True/False
(2) Sym_Ignore True/False
(3) Sym_Tol N
(4) Symmetry_Decomposition N
(1) Default: True. Use symmetry in calculation.
(2) Default: True. Decide whether to reorient molecule.
(3) Default: 5. Tolerance for point group: 10-N.
(4) Default: 1. Calculate MO symmetry.
HFMethod HFHartree-Fock method.
[functional name]Density functional theory.(1) Method [functional name]
(2) Exchange [functional name]
(3) Correlation [functional name]
Density functional theory.
Exchange and correlation enable use of generic definition of functional.
[basis set name]Basis [basis set name]
Integral=Grid=[grid setting]Fine: 75,302.
UltraFine: 99,590; Default in G16.
SuperFine: 175,974 (H/He); 250,974 (Else).
XC_Grid NDefault: 2 (Fine) for meta-GGAs and B95-, B-97 based; 3 (UltraFine) for Minnesota functionals.
Alternative to SuperFine in Gaussian: XC_Grid 000175000974 / 000250000974
R/U[HF or functional name]If not explicit, restricted shell is default for singlet state and unrestricted for else.Unrestricted True/FalseSame default with Gaussian.
RO[HF or functional name]Restricted open-shell Hartree-Fock (ROHF) or Kohn-Sham (ROKS).Method HF or [functional name]
Unrestricted False
For non-singlet systems only.
Guess=ReadSCF_Guess Read
Geom=AllCheckRead(in $Molecule section)
Out=wfnRead extra input for .wfn filename from end of input file.Write_wfn filename
SCF=Conver=NDefault: 8 (Synonym: SCF=Tight)SCF_Convergence NDefault value is related to jobtype. (10N for RMS and 10-(N-2) for density)
SCF=MaxCycle=NDefault: 128SCF_Max_Cycles NDefault: 50. The default value may be too small for some systems.
SCF=VShift=NDefault: 100. Level shift: N/1000 a.u.Step_Epsilon NDefault: 10. Level shift: N/100 a.u.
SPSinglet point. (This is default when no job type is specified.)JobType EnergySinglet point. (This is default when no job type is specified.)

Part III. Keywords for Specific Job Type

III.1 Optimization and PES Scan

Keywords for GaussianNotes for GaussianKeywords for Q-ChemNotes for Q-Chem
OptJobType Opt
Opt=TSJobType TS
Opt=ModRedundantRead extra input after coordinates.JobType PES_Scan(In $Scan section)
Stre [A1] [A2] Start End Increment
Bend [A1] [A2] [A3] Start End Increment
Tors [A1] [A2] [A3] [A4] Start End Increment
ScanJobType PES_Scan
(in $Scan section) Frozen_Scan True/False
Default: False (do not freeze).
Opt=[initial Hessian](1) CalcFC: calculate Hessian matrix at the first step of geometry optimization.
(2) ReadFC: read initial Hessian from .oldchk or .chk file.
Geom_Opt_Hessian [initial Hessian](1) Default: Diagonal. This is a special method in Q-Chem for cheap Hessian matrix at the first step.
(2) Read: read pre-calculated Hessian.
Opt=[coordinates](1) Cartesian
(2) Z-Matrix
Geom_Opt_Coords [coordinates](1) Default: -1. Switch to Cartesian if internal coordinates fails.
(2) 0: Cartesian.
(3) 1: Z-matrix
Opt=[convergence](1) Loose
(2) Tight
(3) VeryTight
Geom_Opt_Tol_Gradient N
Geom_Opt_Tol_Displacement N
Geom_Opt_Tol_Energy N
(1) Default: 300 (Tolerance: N×10-6 a.u.)
(2) Default: 1200 (Tolerance: N×10-6 a.u.)
(3) Default: 100 (Tolerance: N×10-8 a.u.)
Opt=MaxCycles=NGeom_Opt_Max_Cycles NDefault: 50. The default value may be too small for some systems.
Opt=MaxStep=NMax step size: N×10-2 Bohr.Geom_Opt_DMax NDefault: 300. Max step size: N×10-3 Bohr.
NoSymmGeom_Opt_SymFlag True/FalseDefault: True. Control whether to track symmetry only in geometry optimization.
Opt=GDIISGeom_Opt_Max_DIIS NDefault: 0 (Do not use DIIS.).
Freq=NFreq=NThis is only available for ONIOM.Geom_Opt_ChaRac True/FalseDefault: False. Better to be set as True in TS optimization.

III.2 Excited State Methods

Keywords for GaussianNotes for GaussianKeywords for Q-ChemNotes for Q-Chem
CISMethod HFWhen CIS_N_Roots is set to non-zero.
TDMethod [functional name]When CIS_N_Roots is set to non-zero.
CIS/TD(NStates=N)Default: 3.CIS_N_Roots NNo default so must be specified.
CIS/TD(Root=N)Default: 1.CIS_State_Deriv NNo default so must be specified.
CIS/TD(Singlet)This is default.
Note that singlet and triplet only work for closed-shell systems or other spin-adapted methods.
CIS_Singlets True/FalseDefault: True
CIS/TD(Triplet)CIS_Triplets True/FalseDefault: True
CIS/TD(NStates=N,50-50)Search for N singlet states and N triplet states.There is no such keyword in Q-Chem.
Density=CurrentCIS_Relaxed_Density True/FalseDefault: False.
Max_CIS_Cycles NDefault: 30. The default value may be too small for some systems.
CIS_Convergence NDefault: 6 (Threshold for convergence 10N)
Default: 2×NStatesCIS_Subspace NDefault: As many as required.

Part IV. Special Functions in Q-Chem

IV.1 Spin-Flip TDDFT

KeywordsNotes
Spin_Flip True/FalseDefault: False.
SF-TDDFT in Q-Chem is flip-down framework. Although available theoretically, flip-up framework is not currently supported in Q-Chem.
ROKS ground state is not supported in Q-Chem. (It is available in GAMESS.)
CIS_S2_Thresh NDefault: 120 (Threshold for <S2> of singlet state: N/100)
SASF_RPA True/FalseDefault: False.
To perform spin-adapted SF-TDDFT. Although reference state is open-shell, excited states remain eigenfunctions of S2 operator so no spin contamination.
Analytical derivative is not currently available for SA-SF-TDDFT.

IV.2 Minimum Energy Crossing Point Search

KeywordsNotes
JobType Opt
MECP_Opt True
Perform MECP search.
Since this is a optimization job, options for JobType Opt can also influence MECP search.
MECP_Methods [method]Default: Branching_Plane (Branching plane updating method, BPUPD).
Direct: Calculate gradient difference vector and derivative coupling vectors directly. This needs to calculate non-adiabatic coupling, which can be time-consuming.
Penalty_Function: Use penalty function method to accelerate convergence when geometry is far from MECP structure.
MECP_State1 [[Spin],[State_Deriv]]
MECP_State2 [[Spin],[State_Deriv]]
Specify two states for MECP search.
For example, MECP_State1 [0,1] involves S1 state in MECP search. To involve ground state, set State_Deriv to 0.